SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth

نویسندگان

  • Mara Fornaro
  • Peter M. Burch
  • Wentian Yang
  • Lei Zhang
  • Claire E. Hamilton
  • Jung H. Kim
  • Benjamin G. Neel
  • Anton M. Bennett
چکیده

The formation of multinucleated myofibers is essential for the growth of skeletal muscle. The nuclear factor of activated T cells (NFAT) promotes skeletal muscle growth. How NFAT responds to changes in extracellular cues to regulate skeletal muscle growth remains to be fully defined. In this study, we demonstrate that mice containing a skeletal muscle-specific deletion of the tyrosine phosphatase SHP-2 (muscle creatine kinase [MCK]-SHP-2 null) exhibited a reduction in both myofiber size and type I slow myofiber number. We found that interleukin-4, an NFAT-regulated cytokine known to stimulate myofiber growth, was reduced in its expression in skeletal muscles of MCK-SHP-2-null mice. When SHP-2 was deleted during the differentiation of primary myoblasts, NFAT transcriptional activity and myotube multinucleation were impaired. Finally, SHP-2 coupled myotube multinucleation to an integrin-dependent pathway and activated NFAT by stimulating c-Src. Thus, SHP-2 transduces extracellular matrix stimuli to intracellular signaling pathways to promote skeletal muscle growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FGF2 activates TRPC and Ca2+ signaling leading to satellite cell activation

Satellite cells, as stem cells of adult skeletal muscle, are tightly associated with the differentiated muscle fibers and remain quiescent in the absence of muscle damage. In response to an injury, the quiescent satellite cell is activated by soluble factors, including FGFs released from injured myofibers. Using immunostaining, we here first show that TRPC1 channels are highly expressed in sate...

متن کامل

Wnt/ -catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy

Armstrong, Dustin D., and Karyn A. Esser. Wnt/ -catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol 289: C853–C859, 2005. First published May 11, 2005; doi:10.1152/ajpcell.00093.2005.— -Catenin is a transcriptional activator shown to regulate the embryonic, postnatal, and oncogenic growth of many tissues. In most resear...

متن کامل

Akirin2 regulates proliferation and differentiation of porcine skeletal muscle satellite cells via ERK1/2 and NFATc1 signaling pathways

Akirin2, a novel nuclear factor, plays an important role in myogenesis. To investigate the role of Akirin2 in proliferation and differentiation of porcine skeletal muscle satellite cells, Akirin2 overexpression and Akirin2 silence technologies were employed. Our results showed that overexpression of Akirin2 markedly enhanced the proliferation and differentiation of porcine skeletal muscle satel...

متن کامل

stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway

keletal muscle growth requires multiple steps to form large multinucleated muscle cells. Molecules that stimulate muscle growth may be therapeutic for muscle loss associated with aging, injury, or disease. However, few factors are known to increase muscle cell size. We demonstrate that prostaglandin F 2 (PGF 2 ) as well as two analogues augment muscle cell size in vitro. This increased myotube ...

متن کامل

Developmental regulation of the mouse IGF-I exon 1 promoter region by calcineurin activation of NFAT in skeletal muscle.

Skeletal muscle development and growth are regulated through multiple signaling pathways that include insulin-like growth factor I (IGF-I) and calcineurin activation of nuclear factor of activated T cell (NFAT) transcription factors. The developmental regulation and molecular mechanisms that control IGF-I gene expression in murine embryos and in differentiating C2C12 skeletal myocytes were exam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 175  شماره 

صفحات  -

تاریخ انتشار 2006